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Abstract. The Minority Game is adapted to study the “imitation dilemma”, i.e. the tradeoff between local
benefit and global harm coming from imitation. The agents are placed on a substrate network and are
allowed to imitate more successful neighbours. Imitation domains, which are oriented trees, are formed.
We investigate size distribution of the domains and in-degree distribution within the trees. We use four
types of substrate: one-dimensional chain; Erdös-Rényi graph; Barabási-Albert scale-free graph; Barabási-
Albert ‘model A’ graph. The behaviour of some features of the imitation network strongly depend on the
information cost ε, which is the percentage of gain the imitators must pay to the imitated. Generally,
the system tends to form a few domains of equal size. However, positive ε makes the system stay in a
long-lasting metastable state with complex structure. The in-degree distribution is found to follow a power
law in two cases of those studied: for Erdös-Rényi substrate for any ε and for Barabási-Albert scale-free
substrate for large enough ε. A brief comparison with empirical data is provided.

PACS. 89.65.-s Social and economic systems – 05.40.-a Fluctuation phenomena, random processes, noise,
and Brownian motion – 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

The Minority Game (MG) [1,2] emerged in the last decade
as a prototype model of socio-economic behaviour and
some call it (perhaps exaggerating) the “Ising model of
econophysics”. To formulate it shortly, an odd number
of agents, each having two strategies, chooses among two
options. Those who managed to choose the option which
turned to be the minority, win a point, the others loose
a point. A record of winning options is kept and each
agent can see the outcomes in last M rounds. The strate-
gies map the M -tuples of outcomes into suggested choices.
Each strategy has a virtual score, indicating how often it
would suggest the winning choice, provided the strategy
was used by the agent. The actually used strategy is the
one with the highest score.

Such simple dynamical system (in fact it is not a game
in game-theoretic sense, because it is purely deterministic)
has extremely rich behaviour with a phase transition [3,4],
which attracted much attention [5–14] and several analytic
approaches [15–25] were tried to elucidate its properties.
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Despite of all these efforts, the exact solution of MG in its
original formulation [2] eludes us.

Besides the principal interest in dealing with a chal-
lenging model [26,27], MG is frequently used as a testing
bed or framework for various econo- and sociophysical ap-
plications [27,28]. These frequently imply modifications
of MG in specific directions. Among them, the grand-
canonical MG as a model for stock market fluctuations
deserves special attention [29–34].

However, in this work we focus on another offshoot
of MG. In classical formulation, the agents do not inter-
act directly, but exchange information only through the
global authority, which is the record of winning choices.
Several ways were proposed how the agents may interact
locally [35–40].

Some time ago we introduced a model [41,42], in which
the local interaction of agents in Minority Game occurs by
imitation. We used the simplest possible social structure.
Agents placed on a linear can look at their left neighbours.
If the neighbour of an agent is more successful, the agent
follows the actions of the neighbour. Compact imitation
domains performing the same action emerge. Originally we
asked, whether the imitation may bring the assembly of
agents closer to the optimal state by lowering the volatil-
ity. Partially it did happen, and in the crowded phase
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of MG, the imitation domains were shown to lead to en-
hanced performance, i.e. decrease of the volatility [41]. On
the other hand, the individual profit from imitation over-
weighted the respect to global benefits and the domains
did not stop growing when the optimum was reached, thus
turning the performance into the worse again.

This is one of the instances of the effect we call “imi-
tation dilemma”. The simplest way to formulate it is the
following. If the agents have limited capacity to search
for useful resources, cheating is an advantage, because by
copying from other agents who either do their own search
or copy in their turn, the subset of all resources searched
by the imitator is effectively enlarged. On the other hand,
this cannot be a universal strategy, for this would mean
that everybody is copying and nothing is really searched.
Absence of a strategy good for all is the situation which
generically happens also in MG, therefore we consider MG
as a good framework to study the effects of imitation in
general.

Imitation in MG was subsequently elaborated by other
groups [43–47]. New surge of interest in this type of prob-
lems came in the wake of the work by Anghel et al. [48].
While our study [41,42] was limited on the simplest one-
dimensional directed topology of the interactions between
agents, in reference [48] the agents resided at the ver-
tices of a random graph, specifically on Erdös-Rényi (ER)
graph [49] where an edge between any pair of vertices is
present with probability q, independently of the presence
or not of other edges. Upon this substrate graph the agents
form an imitation network. Every agent adopts the strat-
egy of their best performing neighbour, unless she is her-
self better than any if her neighbours. Contrary to our
approach, the imitation does not propagate further, so
that large domains acting in unison are not formed and
the feedback on the MG dynamics is therefore very weak,
if any. Nevertheless, the improvement of performance in
the crowded phase was found here too.

The main result was that the imitation network has
power-law degree distribution. The value of the exponent
was �1 and was remarkably universal, showing no depen-
dence on either the MG parameters N and M , or the edge
probability q.

This work was followed by careful numerical and ana-
lytical scrutiny [50–54]. The question appeared naturally,
what happens if we use other networks as a substrate, in-
stead of ER graph. It was found [55,56] that the behaviour
is strongly influenced by the type of the substrate. Three
types of the latter can be distinguished, namely the ER
graph, 1D regular lattice and a scale-free network, be it
the Barabási-Albert (BA) graph [57] or another example
from the same category. Roughly speaking, the efficiency
was worst in 1D case, best in ER case, and scale-free net-
works were somewhere in between. What concerns the
structure of the imitation network, power-law degree dis-
tribution was reported on both ER and scale-free graphs.
The exponent was 1 in the former, but significantly larger
in the latter case. However, to be frank, our reading of
reference [56] suggests that for BA graph there may be
important influence of the memory length M . The data

show clear power law only for M = 2, but deviate from
it the more the larger M is. Contrary to the ER case, for
scale-free substrate the scale-free structure of the imita-
tion network does not seem universal.

In this work we ask similar questions for our original
model [41]. However, we shall broaden our focus to fea-
tures which are typical to our approach, especially the
structure of imitation domains and influence of the cost
of information, i.e. the fee the imitators must pay to the
imitated.

We should also stress that the study of imitation net-
works is not a purely academic business. Recent empirical
studies in this direction exist [58], based on the study of
delayed correlation functions of various stocks on the mar-
ket.

2 Minority Game with imitation

Let us describe the structure of our model [41] generalised
to arbitrary substrate graph. There are N agents with
memory M playing standard Minority Game, with op-
tions ±1. Each agent has two strategies distinguished by
index σ = ±1. If the M -tuple of last winning options is
µ ∈ {−1, +1}M, the strategy σ belonging to agent i sug-
gests the action aµ

i,σ. The strategies are given scores Ui,σ

according to standard minority rule. The best strategy of
the agent i is S(i) = sign(Ui,+1 −Ui,−1). However, the ac-
tion taken by an agent is not just the action suggested by
her best strategy, but it is influenced by the social network
the agents are placed on.

The network is represented by a graph (V , E), where
each of the vertices from the vertex set V = {1, 2, . . . , N}
hosts one agent and the edges from E specify who can
share information wit whom. In [41] we considered di-
rected edges, but here the edges will be always undirected.
Let us denote Γi = {j ∈ V : (i, j) ∈ E} ⊂ V the lo-
cal neighbourhood of the agent i. When the agent tries
to figure out what action to take, she first compares her
own wealth with the wealth of agents in her neighbour-
hood. If she happens to be the wealthiest, she is classified
as a leader, otherwise she is a follower. Denote Wi(t) the
wealth of the agent i at time t. The status of the agent i
is described by the variable

li = θ(max
j∈Γi

Wj − Wi) (1)

where θ(x) = 1 for x > 0 and θ(x) = 0 otherwise. If
the agent is a follower, li = 1, then we denote L(i) =
argmaxj∈Γi Wj the agent imitated by i, or her local leader.
The action actually taken by the agent i is then given by
the recurrent formula

ai = li aL(i) + (1 − li) aµ
i,S(i). (2)

In plain words, the leaders use their best strategies, while
the followers copy the action from their local leaders,
which, in their turn, can also be followers, thus we must
continue along the imitation chain until we end at a
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leader. Here we differ substantially from the model by
Anghel et al.

As we have already said, the strategies’ scores evolve
according to the usual minority rule. On the other hand,
for the increase of the wealth of an agent we adopt slightly
more complicated prescription. Indeed, one of the most
important ingredients of our model is the assumption
that the information is not given for free, but the follow-
ers must pay certain percentage ε of their gain to their
respective local leaders. Again, the formula for wealth
update is recursive, because the local leaders may be
themselves followers and send part of the collected fee
further to their local leaders, until the imitation chain
ends. Introducing an auxiliary variable Yi, and denoting
Ωi = {j ∈ Γi : L(j) = i} the set of agents who follow the
agent i, the formula is

Wi(t + 1) − Wi(t) = (1 − ε li)Yi(t)

Yi(t) =
1
2

[
1 − ai(t) sign

( N∑
j=1

aj(t)
)]

+ ε
∑
j∈Ωi

Yj(t). (3)

Clearly, Yi(t) is the profit acquired by the agent i at time t.
The first term in the second line of (3) represents the direct
gain depending on the action ai of the agent i, as the
minority rule dictates. The second term is the fee the agent
i collected from her followers. From this profit, the agent
sends ε li Yi(t) to her local leader. Hence the expression in
the first line of (3).

3 Imitation networks

3.1 Generally

First of all, we note that the imitation network is a col-
lection of oriented trees; the edges go from the imitator
to the imitated. In real world the situation may not be
so simple, as we can imagine agents who compile pieces
of information from two or more sources, combining them
into a more complex strategy. And indeed, the empirical
study of influence network [58] reveals a structure which
is not a simple tree. All this is neglected in our model.

Each of the trees contains just one leader, which is
the root. So, the tree is an imitation domain taking the
same action. The first question we ask is the size distribu-
tion P (d) of the imitation domains. The network evolves
in time and we shall see that sometimes the evolution is
rather slow. We shall observe snapshots of the distribution
at several times and more detailed evolution of some of its
features, like the number of domains ndom and the size of
the largest one dmax.

More detailed insights in the structure of imitation
trees is provided by the degree distribution. Obviously, the
out-degree is always 1, but the in-degree is non-trivial. In
this work we shall call it forking and for the agent i it
is fi = |Ωi|. Besides the distribution of domain sizes, the
distribution of forking P (f) will be the most interesting
quantity.

As for the substrate network, three types of graphs will
be studied. First of them is the one-dimensional chain,
or rather ring, because we use periodic boundary condi-
tions. The edges connect only the nearest neighbours in
this chain and the imitation network consists of one di-
mensional segments. The forking can assume only values
f = 0, 1, or 2 and is therefore trivial.

The second type of substrate is the Erdös-Rényi (ER)
random graph [49] where each pair of vertices is connected
with the same edge probability q. Important feature of
the ER graph is that the degree distribution is strongly
peaked around the value qN , so that the graph is very
homogeneous.

This is not the case for the third substrate investi-
gated. It is the Barabási-Albert graph [57], constructed
via a graph process, where placing of new edges is deter-
mined by the positions of already existing edges. At step i
we connect the vertex i by m new edges with some of the
vertices 1, 2, . . . , i− 1. The probability that we connect it
to the vertex j is proportional to kj + b, where kj is the
number of edges already connected to j from vertices >j
and b is the second parameter of the model, besides the
number m. The simplest choice is b = m and we shall
use it also here. The process generates a graph with very
broad degree distribution, which asymptotically follows a
power law. However, we must note that for the typical size
used in this work, N = 1001, the BA graph is not yet in
the asymptotic regime and it would be too daring to claim
that the substrate has power-law degree distribution.

The fourth type of substrate is the Barabási-Albert
‘model A’ graph [57], which differs from the usual BA
model by absence of preferential attachment, i.e. in the
graph process the new m edges connect the vertex i with
any of the vertices 1, . . . , i − 1 with equal probability. In
this case, the degree distribution is exponential.

3.2 Linear chain

In this case it is easy to visualise the imitation domains.
We show in Figures 1 and 2 the typical distribution of
wealth among agents, as it evolves in time. The leaders
are located at local maxima of the curves, while the local
minima mark the boundaries between different imitation
domains. The evolution tends to coarsen the domains, as
some of the domains are swallowed by other ones. We
can also see that the overall character of the “landscapes”
depend on the cost of information ε. For smaller ε the
slope of the valleys is more or less uniform; for larger ε
the bottom of the valleys is more flat, but in the vicinity
of the leader the slope is much higher.

Let us now look at the evolution of the number of
domains and size of the largest domain, as shown in Fig-
ure 3. We do not observe any noticeable dependence on
the memory length M , but the influence of the informa-
tion cost is significant. Although the general character of
the time dependence remains the same, larger ε markedly
slows down the evolution. But the most important ob-
servation is that in all cases investigated the final state



56 The European Physical Journal B

j
10008006004002000

1
0

1

0

1

0

(W
j
−

〈W
〉)/

√
〈W

2
〉−

〈W
〉2

1

0

1
0

1
0

Fig. 1. Imitation on linear chain of length N = 1001. Snap-
shots of the distribution of wealth among agents at times (from
tom to bottom) t = 885, 26 366, 61 584, 143 844, 335 981, and
784 759. The positions of the leaders are indicated by bullets.
The memory length is M = 6; the information cost is ε = 0.003.

consists of two domains only, each of them comprising ap-
proximately half of the agents. The balance in the sizes of
the remaining two domains can be understood as a feed-
back effect from the minority rule to the imitation network
structure. Indeed, the domain which is larger must always
loose. Only the smaller domain can sometimes win. But
as it wins, it headhunts new adherents from the edge of
the larger domain, until it becomes itself larger than the
other domain and the growth reverts. An important les-
son from Figure 3 is also the scale of time when the final
state is reached. For example, if one ended the evolution
at step 106 for ε = 0.01, it would seem that we are close
to a stationary state with several tens of domains. But
this would be wrong, as we would have reached only a
long-lived metastable or transient state. After 107 steps it
relatively quickly drops to the true stable state with two
domains.

This also means that the stationary domain size dis-
tribution is trivial. On the other hand, the transient dis-
tribution is not and we show its shape, as it evolves in
time, in Figure 4. We found that typically in the transient
regime there is one large domain and many small ones.
Therefore, in Figure 4 we show the distribution of all do-
mains except the largest one. Clearly, the distribution has
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Fig. 2. The same as Figure 1 for ε = 0.01. Times are (from
tom to bottom) t = 2335, 112 883, 297 635, 784 759, 5 455 594,
14 384 498, and 108.

exponential tail which becomes broader as time passes.
This is the quantitative manifestation of the coarsening
of domains we observed qualitatively in Figures 1 and 2.
The same type of behaviour was seen for any value of
the memory M and the information cost ε. The domains
look as if the leaders were scattered randomly and covered
the parts of the chain which go up to a point somewhere
between themselves and the closest leader. Indeed, it is
an elementary result from probability theory that distri-
bution of distances between points distributed randomly
on a line is exponential. This finding suggests that in the
transient regime the feedback of the minority rule on the
structure of the network is weak and becomes significant
only in the true stationary state or close to it.

It is very instructive to look also at the evolution of
the volatility. To this end, we define time-resolved average
of square attendance, with exponentially decaying kernel

〈A2〉t = λ

( N∑
i=1

ai(t)
)2

+ (1 − λ)〈A2〉t−1. (4)

We use λ = 0.01, which implies effectively averaging over
last 100 steps. The results shown in Figure 5 demonstrate
strong dependence on the memory length. For lower M
we are in the crowded phase and creation of domains sub-
stantially lowers the volatility Recall that lower volatility
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Fig. 3. Time evolution of the number of imitation domains
(upper panel) and the size of the largest domain (lower panel),
on a linear chain of length N = 1001. The memory length is
M = 6 (◦ and �), M = 10 (� and �); the information cost
is ε = 0.003 (� and �) and ε = 0.01 (◦ and �).
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Fig. 4. Distribution of imitation domain sizes on a linear chain
of length N = 1001. The largest domain is excluded from this
statistics. Data take at times t = 694 (�), t = 6157 (�),
t = 12 741 (�), and t = 26 365 (◦). The memory length is
M = 6; the information cost is ε = 0.003.

means more effective system, i.e. in this regime imita-
tion means benefit for the system as a whole. But this
holds only in the transient period. When the domains start
growing beyond certain level, the volatility grows until it
settles at a value which is orders of magnitude larger than
the volatility in standard MG. The selfish desire of the
agents to copy from more successful neighbours eventu-
ally leads to disaster for the whole ensemble. This is the
imitation dilemma at work.
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Fig. 5. Time evolution of the square attendance averaged
with exponentially decaying kernel. Imitation occurs on a lin-
ear chain of length N = 1001. Memory and information cost
are ε = 0.01, M = 10 (�) and ε = 0.003, M = 6 (�), M = 8
(◦), M = 10 (�).

We also perceive the influence of the information cost
in Figure 5. Although the ultimate fate is the same, larger
ε prolongs the transient period. A partial explanation may
be found when comparing Figures 1 and 2. As we already
mentioned, the peaks topped by leaders are sharper for
larger ε, so it is less likely that one domain swallows the
other.

3.3 Erdös-Rényi graph

Similar study was carried for the ER substrate network.
The evolution of the distribution of domain sizes is shown
in Figure 6. We clearly see the tendency towards forma-
tion of a single peak around the average domain size, al-
though we were not able to make runs long enough to be
sure about what is the stationary state. However, it seems
that several domains (more than two) of approximately
the same size are formed. There is an interesting differ-
ence between chain and ER substrates in the transient
regime. While we have seen that the chain accommodates
exponentially distributed domains, on ER graph the do-
main sizes are distributed according to the power law

P (d) ∼ d−δ (5)

with δ � 1.2. This power-law distribution is formed almost
instantly and then slowly breaks down when the peak is
formed.

Surprisingly, the forking distribution remains almost
unchanged in the time evolution, as testified in Figure 7,
only the cutoff at highest f moves to higher values, as the
domains grow. Obviously, f cannot exceed the domain
size. This observation suggests that the evolution of the
domains proceeds by merging smaller domains into larger
ones, while the internal structure of the domains is kept
essentially unchanged. In Figure 7 we can also see that nei-
ther the information cost has any influence on the forking
distribution. We can conclude that the power law

P (f) ∼ f−1 (6)



58 The European Physical Journal B

d

P
(d

)

10310 1001

10−3

10−4

10−5

0.01

0.1

1

Fig. 6. Distribution of sizes of the imitation domains on Erdös-
Rényi graph with N = 4001 and edge probability q = 0.1. The
distribution is plotted by points at times t = 2 (�), t = 6 (�),
and t = 11 (�). The histograms show the distribution at times
t = 11 (histogram pointed at by the arrow) and t = 10 000. The
memory length is M = 7; the information cost is ε = 0. The
straight line is the power-law dependence ∝d−1.2.
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Fig. 7. Forking distribution on ER graph with N = 4001 and
edge probability q = 0.1, at times t = 6 (�) and t = 10 000
(◦). The memory length is M = 7; the information cost is
ε = 0. The straight line is the power-law dependence ∝f−1.

holds universally on ER graph. Exactly the same result
was found in reference [48] and this is another argument
on favour of the universality of the distribution (6), which
seems to be insensitive to the details of the procedure of
formation of the imitation network.

3.4 Barabási-Albert graph

We use BA graph with parameters m = b = 2. We have
not seen much difference for different choices of the pa-
rameters.

Contrary to the ER graph, BA graphs are very inho-
mogeneous. The degree distribution is broad. We believe
that it is not so much important whether it is strictly a
power law or not. The essential point is that the tail of
the distribution falls off slowly enough.

As with the one-dimensional chain, we first investigate
temporal aspects of the domain distribution. In Figure 9
we can see the evolution of the number of domains and
size of the largest domain. The most striking feature is
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Fig. 8. Forking distribution on ER graph with N = 4001 and
edge probability q = 0.1. The memory length is M = 7; the
information cost is ε = 0 (◦) and ε = 0.1 (�). The straight
line is the power-law dependence ∝f−1.
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Fig. 9. Time evolution of the number of domains (up-
per panel), and size of the largest domain (lower panel) on
Barabási-Albert graph with N = 1001 and parameters m =
b = 2. The memory length is M = 5 and the cost of the in-
formation is ε = 0, (×), 0.01 (�), 0.02 (�), 0.05 (�), 0.1 (◦),
and 0.5 (�).

different behaviour for zero and positive information cost.
When ε = 0, the evolution does not seem to end within
the time we were technically able to simulate. The number
of domains keeps decreasing and the largest domain keeps
growing. On the other hand for ε > 0 a stationary state
seems to be reached. Of course, we cannot be sure that we
reached a true stationarity. In fact, it is very probable that
we see only a very long-lived transient state, as was the
case in one-dimensional chain, and because higher ε hin-
ders the approach to the true equilibrium, we are unable
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Fig. 10. Distribution of sizes of the imitation domains on
Barabási-Albert graph with N = 1001 and parameters m =
b = 2. The distribution is measured at times t = 2 (◦), t = 12
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power-law dependence ∝d−3, the dashed line is the Gaussian
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(d − d0)/d1

]2)
with d0 = 15 and d1 = 55.

to observe it. For simplicity we shall speak of stationary
state even though it may be in fact a transient.

The parameters of the stationary state depend on ε
in a subtle way. The number of domains increases very
weakly when we go ε = 0.01 to 0.1, while the largest do-
main increases too, and rather steeply. This can mean only
one thing: the distribution broadens when we increase ε. In
Figures 10 and 11 we observe snapshots of the domain size
distribution at several times, for ε = 0, 0.01, and 0.1. We
can see that for ε = 0 the domain distribution is power-
law initially, with exponent close to δ � 3 and then grad-
ually develops a peak, which we fitted relatively well on a
Gaussian. The situation we found in the one-dimensional
chain and ER graph repeats here. The domains balance
their sizes so that none of them dominates. This is clearly
due to the feedback of the minority mechanism on the
imitation network structure. For slightly larger informa-
tion cost ε = 0.01 the situation starts to change. Again,
at early stages the distribution is power-law with δ � 3
but then the exponent decreases and eventually the tail
ceases to be power-law, although the peak is not formed
either. For still larger value ε = 0.1 the stationary state is
characterised by power-law tail with exponent δ � 2.

The overall scenario seems to be the following. Very
quickly, power-law distributed domains are formed, with
exponent δ � 3. Then, the domains coarsen by merging
and the exponent drops to the value δ � 2. But when
some domains become so large that the minority rule dis-
favours their members, their growth stops or they may
even shrink, as some agents within the imitation tree split
off and skip to another domain. Such process dissolves
the power-law tail and eventually leads to a distribution
peaked around the average domain size. Now comes the
influence of the information cost. We have seen that larger
ε slows down the process of merging the domains. The sta-
tionary state is reached, which is the less influenced by the
minority mechanism the larger the information cost is. If
we consider the steady evolution with ε = 0 as a reference
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Fig. 11. Distribution of sizes of the imitation domains on BA
graph with N = 1001 and parameters m = b = 2. The distri-
bution is measured at times t = 2 (◦), t = 8 (�), t = 695 (�),
and t = 106 (�). The memory length is M = 5; the informa-
tion cost is ε = 0.01 (upper panel) and ε = 0.1 (lower panel).
The solid lines are the power-law dependence ∝d−3, while the
dashed line denotes the power law ∝d−2.
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Fig. 12. Distribution of forking on Barabási-Albert graph with
N = 1001 and parameters m = b = 2. The distribution is
measured at times t = 2 (◦), t = 12 (�), t = 2068 (�), and t =
107 (�). The memory length is M = 5; the information cost
is ε = 0. The straight line is the power-law dependence ∝f−3.

behaviour, positive ε stops the evolution at certain stage,
the earlier the greater ε is. For example for ε = 0.01 the
power-law tail breaks down, but the peak does not have
time to develop. For ε = 0.1 the power-law tail does not
have time to vanish and remains there.

The forking behaves differently than it did on ER
graph. We show in Figures 12 and 13 how the forking dis-
tribution evolves in time. The change is not spectacular
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Fig. 13. Distribution of forking on Barabási-Albert graph with
N = 1001 and parameters m = b = 2. The distribution is
measured at times t = 2 (◦), t = 8 (�), t = 695 (�), and
t = 106 (�). The memory length is M = 5; the information
cost is ε = 0.1. The solid line is the power-law dependence
∝ f−3, while the dashed line denotes the power law ∝f−2.5.
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Fig. 14. Distribution of forking on Barabási-Albert graph with
N = 1001 and parameters m = b = 2. The memory length is
M = 5. The information cost is ε = 0 (�), 0.01 (◦), and 0.1
(�). The line is the power-law dependence ∝f−2.5.

but cannot be overlooked. Here also the information cost
makes big difference. The distribution which emerges
quasi instantly is power law P (f) ∼ f−φ with φ � 3. But
for ε = 0 the power-law tail is gradually lost and large
forkings are suppressed, while for ε = 0.1 large forkings
are enhanced instead, and power law with lower exponent
φ � 2.5 results. We can compare the ultimate distribu-
tions for ε = 0, 0.01, and 0.1 in Figure 14. Power-law
dependence is clearly seen for non-zero information cost,
while the distribution for ε = 0 decays clearly faster than
a power law. Therefore, contrary to the ER graph the evo-
lution implies not only merging domains but also change
in their internal structure. Details of this process are not
clear yet.

We already stressed several times that BA graph is
very inhomogeneous. Agents who sit on vertices with high
substrate degree may behave differently than those who
have only few links on the substrate graph. To see better
the difference, we investigated average forking and aver-
age wealth conditioned to the degree of the vertex on the
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Fig. 15. Average forking conditional to the degree of the ver-
tex on the substrate graph, for Barabási-Albert graph with
N = 1001 and parameters m = b = 2. The empty and filled
symbols correspond to leaders and imitators, respectively. The
information cost is ε = 0 (� and �), 0.01 (� and �), 0.1 (◦
and •).

substrate graph. For the forking we define

〈f |k〉 =
∑N

i=1 |Ωi|δ(|Γi| − k)∑N
i=1 δ(|Γi| − k)

(7)

where by δ(x) we denote the Kronecker delta. As for the
wealth, it is convenient to use the reduced value, which,
for of agent i, is

W̃i =
NWi∑N
j=1 Wj

− 1. (8)

The conditional average is then, in analogy with (7),

〈W̃ |k〉 =
∑N

i=1 W̃iδ(|Γi| − k)∑N
i=1 δ(|Γi| − k)

. (9)

We shall also distinguish between leaders and imitators.
The data are shown in Figures 15 and 16. A surprising
result is observed for conditional average forking of the
leaders, for 〈f |k〉 grows faster than k for any ε, although
for larger ε the effect is more pronounced. Followers behave
differently. Zero information cost implies slower increase
than k, intermediate value leads to proportionality with k
and high values of ε cause faster-than-linear growth also
for the followers. A possible explanation is the following.
When imitation becomes expensive, agents lying high on
the imitation tree collect more wealth and therefore can
attract more followers. But the number of followers is lim-
ited by the degree k of the vertex on the substrate. If the
buildup of the imitation tree was random, the number of
followers a local leader gets would be proportional to k.
But this would induce larger wealth collected as imitation
fee, and therefore the probability to get further follow-
ers is enhanced. Proportion of substrate edges used in the
imitation tree is therefore higher for vertices with higher
substrate degree.

The conditional wealth shown in Figure 16 comple-
ments this picture. The first obvious observation is, that
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Fig. 16. Average reduced wealth W̃ = W/〈W 〉−1 conditional
to the degree of the vertex on the substrate graph, for Barabási-
Albert graph with N = 1001 and parameters m = b = 2. The
empty and filled symbols correspond to leaders and imitators,
respectively. The information cost is ε = 0 (� and �), 0.01
(� and �), 0.1 (◦ and •). To accommodate all data in one
figure, the auxiliary factor s is introduced, with s = 10, 1, 0.1
for ε = 0, 0.01, and 0.1, respectively.

the leaders have wealth consistently above average and the
followers below. Only followers with high substrate vertex
degree rise beyond average, and they are few. For ε > 0
leaders with higher k have always larger wealth. On the
other hand, the wealth of the followers grows with k only
for large enough ε and k. For zero information cost the
wealth of followers decreases with k instead.

3.5 Barabási-Albert ‘model A’ graph

In this case, the substrate degree distribution is exponen-
tial and the properties of the imitation network change
accordingly, compared to the BA graph investigated in
the previous section. However, some features remain in
force. For example the domain size distribution plotted in
Figure 17 shows that for zero information cost the dis-
tribution is peaked, while for ε = 0.1 it is not, but has
exponential shape like in the transient state of the one-
dimensional chain. The forking in Figure 17 is distributed
exponentially for all values of ε investigated, but larger
value of the information cost results in broader distribu-
tion. We can conclude that for emergence of power-law
distributed forking it is necessary that there are enough
vertices with large degree in the substrate. This is satis-
fied in ER and BA graph, but not in linear chain or BA
‘model A’ graph.

4 Conclusions

Minority Game proved to be a very productive frame-
work for studying the effect of social imitation. The four
substrate graphs studied, i.e. linear chain, ER graph, BA
graph and BA ‘model A’ graph, share some general fea-
tures but show significant differences in others. We looked
at the structure of imitation domains. By definition, they
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Fig. 17. Distribution of imitation domain sizes (upper panel)
and forking (lower panel) on Barabási-Albert ‘model A’ graph,
with N = 1001 and m = 2. The memory length is M = 5. The
information cost is ε = 0 (�) and 0.1 (◦).

are oriented trees, which at the same time must be sub-
graphs of the substrate. This imposes limits on their struc-
ture; e.g. on the one-dimensional chain their topology is
trivial and the only interesting parameter is their length.

The domains are dynamic objects. They slowly grow,
merge, and exchange agents among each other. The minor-
ity character of the game discourages the agents to join
a domain which is too large, because this enhances the
chance to be in the majority. We observed clear tendency
to form a few equally sized domains. For the chain sub-
strate we have shown that the final state consists of only
two domains comprising nearly exactly half of the agents
each. For other substrates, the runs were not long enough
to be sure about the final outcome, but we consider very
likely that the evolution would lead to the same result.

The important parameter was the information cost
ε the imitators must pay to the imitated. Non-zero ε
markedly slows down the approach to the stationary
state conjectured above. Instead, long-living metastable,
or transient, state develops, with highly non-trivial struc-
ture. Taking the case ε = 0 as a reference, the transient
state for higher ε looks as if the reference evolution was
stopped at earlier time. Different values of ε are roughly
equivalent to snapshots of the ε = 0 evolution at different
times.

It was the transient state we devoted most attention
to. We found that the distribution of domain sizes is ex-
ponential if the substrate is either the one-dimensional
chain or BA ‘model A’ graph. For ER and BA graphs
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power-law domain size distribution is formed almost in-
stantly but then evolves towards a well-defined peak. For
BA graph we first observe mere lowering of the exponent
of the power-law distribution, then the tail is rounded by
a cutoff and finally a peak develops. Depending on the
value of ε the evolution of the distribution stops at differ-
ent moments, the earlier the higher ε is.

The internal structure of the imitation domains was
measured through the in-degree, which we call forking,
of the imitation trees. For one-dimensional substrate it
is trivial. For ER graph, we find power-law distribution
with exponent φ � 1, in agreement with previous stud-
ies [48,56]. The exponent seems to be very robust and
does not change even when the distribution of domain
sizes changes dramatically. A possible explanation, sug-
gested already by some conjectures raised in [48] is, that
the imitation trees formed at the earliest stages of the
evolution have barely random nature, with no reference
to the rules of the Minority Game and/or the details of
the model. Hence the insensitivity to the parameter ε and
the memory length M and also to the differences between
our model and the model of references [48,56]. Moreover,
the forking distribution does not change in time, so the
structure imprinted at the beginning seems to remain in
force forever. Most probably the reason is that the imita-
tion domains evolve by merging, without other structural
changes.

The situation is somewhat different on the BA sub-
strate graph. Also here a power-law forking distribution
is created immediately, with exponent φ � 3, but then it
changes, breaking the power-law at for ε = 0, while for
ε > 0 the distribution tends to power law again, but with
lower exponent φ � 2.5. This implies that on BA substrate
the domains evolve not by mere aggregation, but also by
internal rearrangement.

For BA ‘model A’ substrate the domain distribution
has again exponential tail, as in the case of linear chain.
This is not so surprising, as the degree distribution in BA
‘model A’ is exponential and therefore large degrees are
very unlikely, while most probable degree is about 3 (for
the value m = 2 used in our simulation) independently of
the system size. So, the substrate is very close to a regular
tree of degree 3, while linear chain is in fact regular a three
of degree 2. Note the difference from ER graph, where
the tail decays faster than exponentially, but the peak is
located at large value, proportional to the system size N ,
if the edge probability q is kept fixed.

The forking distribution for BA ‘model A’ is exponen-
tial, which is dictated by the exponential degree distri-
bution of the substrate. Indeed, there are few nodes with
high substrate degree, so there is no chance to find many
agents with large forking.

For BA substrate we also investigated the correlations
between forking and wealth on one side and substrate de-
gree on the other. We found that the leaders and followers
behave differently and there is also strong dependence on
the information cost ε. Most importantly, the forking at
the leaders grows faster than linearly with the substrate
degree and this effect is the stronger the larger ε is. Agents
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Fig. 18. Cumulative degree distribution in the network of
influence. The data were extracted from Figure 4 of refer-
ence [58]. The straight line is the power law ∝k−2.

with higher degree are more effective in using their edges
to attract followers. For the forking at the followers, the
same effect appears only for large enough ε. For zero in-
formation cost, the dependence on the substrate degree
is sub-linear. The followers with larger degree attract less
other followers than they would if the edges were exploited
randomly.

This feature is certainly due to the fact that an agent
with more neighbours can collect more wealth as a fee
from her imitators. But higher wealth implies even more
imitators. Hence the super-linear dependence of the fork-
ing on substrate degree. This picture is supported by the
dependence of average wealth on substrate degree, which
is growing function for the leaders. On the other hand,
it is decreasing for the followers if the information cost is
zero. Only for large enough ε the wealth of followers is also
growing function of substrate degree.

Finally, to compare our result with reality, we ex-
tracted the degree distribution from the network of mutual
influence published in Figure 4 of reference [58]. We show
the extracted data in our Figure 18. The first impression
is that the network is too small and the distribution covers
too narrow range to make any firm conclusion. However,
the data at least do not exclude the possibility of power-
law degree distribution with exponent close to 2. In our
simulations the exponent was either significantly smaller,
for ER substrate, or somewhat larger, for BA substrate.
So, qualitatively the model seems to be compatible with
reality, but there is quantitative disagreement in the ex-
ponent. The comparison is further complicated by the fact
that the influence network of reference [58] is not a tree but
a more complicated structure. Clearly, comparison with
further and more extensive empirical data is necessary
if we want to assess practical relevance of our imitation
models.
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H. Lavička and F. Slanina: Evolution of imitation networks in Minority Game model 63

References

1. W.B. Arthur, Amer. Econ. Rev. (Papers and Proceedings)
84, 406 (1994)

2. D. Challet, Y.-C. Zhang, Physica A 246, 407 (1997)
3. R. Savit, R. Manuca, R. Riolo, e-print

arXiv:adap-org/9712006

4. R. Savit, R. Manuca, R. Riolo, Phys. Rev. Lett. 82, 2203
(1999)

5. D. Challet, Y.-C. Zhang, Physica A 256, 514 (1998)
6. D. Challet, M. Marsili, Phys. Rev. E 60, R6271 (1999)
7. N.F. Johnson, S. Jarvis, R. Jonson, P. Cheung, Y.R.

Kwong, P.M. Hui, Physica A 258, 230 (1998)
8. N.F. Johnson, P.M. Hui, R. Jonson, T.S. Lo, Phys. Rev.

Lett. 82, 3360 (1999)
9. N.F. Johnson, D.J.T. Leonard, P.M. Hui, T.S. Lo, Physica

A 283, 568 (2000)
10. R. D’Hulst, G.J. Rodgers, M. Ausloos, e-print

arXiv:adap-org/9907003

11. A. Cavagna, J.P. Garrahan, I. Giardina, D. Sherrington,
Phys. Rev. Lett. 83, 4429 (1999)

12. M.A.R. de Cara, O. Pla, F. Guinea, Eur. Phys. J. B 13,
413 (2000)

13. J.P. Garrahan, E. Moro, D. Sherrington, Phys. Rev. E 62,
R9 (2000)

14. J.P. Garrahan, E. Moro, D. Sherrington, e-print
arXiv:cond-mat/0012269

15. A. Cavagna, Phys. Rev. E 59, R3783 (1999)
16. D. Challet, M. Marsili, R. Zecchina, Phys. Rev. Lett. 84,

1824 (2000)
17. M. Marsili, D. Challet, R. Zecchina, Physica A 280, 522

(2000)
18. D. Challet, M. Marsili, R. Zecchina, Int. J. Theor. Appl.

Finance 3, 451 (2000)
19. M. Marsili, D. Challet, Phys. Rev. E 64, 056138 (2001)
20. T.S. Lo, P.M. Hui, N.F. Johnson, Phys. Rev. E 62, 4393

(2000)
21. M. Hart, P. Jefferies, P.M. Hui, N.F. Johnson, Eur. Phys.

J. B 20, 547 (2001)
22. J.A.F. Heimel, A.C.C. Coolen, Phys. Rev. E 63, 056121

(2001)
23. A.C.C. Coolen, J.A.F. Heimel, D. Sherrington, Phys. Rev.

E 65, 016126 (2002)
24. J.A.F. Heimel, A. De Martino, J. Phys. A: Math. Gen. 34,

L539 (2001)
25. T. Galla, A.C.C. Coolen, D. Sherrington, J. Phys. A:

Math. Gen. 36, 11159 (2003)
26. A.C.C. Coolen, The Mathematical Theory of Minority

Games (Oxford University Press, Oxford, 2005)
27. D. Challet, M. Marsili, Y.-C. Zhang, Minority Games

(Oxford University Press, Oxford, 2005)
28. N.F. Johnson, P. Jefferies, P.M. Hui, Financial Market

Complexity (Oxford University Press, Oxford, 2003)

29. Y.-C. Zhang, Europhys. News 29, 51 (1998)
30. D. Challet, A. Chessa, M. Marsili, Y.-C. Zhang,

Quantitative Finance 1, 168 (2001)
31. D. Challet, M. Marsili, Y.-C. Zhang, Physica A 276, 284

(2000)
32. P. Jefferies, M. Hart, P.M. Hui, N.F. Johnson, Eur. Phys.

J. B 20, 493 (2001)
33. D. Challet, M. Marsili, Y.-C. Zhang, Physica A 294, 514

(2001)
34. I. Giardina, J.-P. Bouchaud, M. Mézard, e-print
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